Debugging
Step 1: Check Logs
# View agent logs
tail -f logs/agent.log
# Check errors
tail -f logs/errors.log
# Filter by time
grep "2025-01-15" logs/agent.logStep 2: Test API Connections
# Test LLM API
from agent_builder_framework import test_llm_connection
test_llm_connection('anthropic', api_key)
# Test platform API
from agent_builder_framework import test_platform_connection
test_platform_connection('twitter', credentials)Step 3: Validate Configuration
# Check environment variables
python agent_[ID].py --check-config
# Validate API keys
python agent_[ID].py --validate-keys
# Test mode (no actual posts)
python agent_[ID].py --testStep 4: Monitor Resources
# Check memory usage
ps aux | grep python
# Monitor network
netstat -an | grep ESTABLISHED
# View process info
top -p $(pgrep -f agent_)Getting Help
Documentation:
Read this documentation thoroughly
Check README files
Review code comments
Community Support:
Discord community
GitHub discussions
Twitter/X: @GraceOS
Direct Support:
Email: [email protected]
Priority support: [email protected]
Bug reports: GitHub Issues
Information to Include:
Agent ID
Error messages
Transaction hash (if payment related)
Steps to reproduce
Browser/system information
Screenshots (if applicable)
Performance Optimization
LLM Cost Management
Token Usage:
Understanding token costs:
Input tokens: Usually cheaper
Output tokens: Usually more expensive
Context window: Affects performance
Optimization Strategies:
Prompt Optimization:
Shorter, clearer prompts
Remove redundant instructions
Use system messages efficiently
Cache stable prompts
Response Length Control:
Set max_tokens appropriately
Use stop sequences
Implement length checking
Truncate when necessary
Model Selection:
Use smaller models for simple tasks
Reserve powerful models for complex queries
Implement tiered response system
Monitor cost per interaction
Cost Tracking:
# Example cost tracking
class CostTracker:
def __init__(self):
self.total_cost = 0
self.interactions = 0
def log_usage(self, model, input_tokens, output_tokens):
cost = calculate_cost(model, input_tokens, output_tokens)
self.total_cost += cost
self.interactions += 1
def get_average_cost(self):
return self.total_cost / self.interactions if self.interactions > 0 else 0Caching Strategies
Response Caching:
Cache frequently asked questions:
from functools import lru_cache
import hashlib
class ResponseCache:
def __init__(self, max_size=1000):
self.cache = {}
self.max_size = max_size
def get_cache_key(self, query):
return hashlib.md5(query.encode()).hexdigest()
def get(self, query):
key = self.get_cache_key(query)
return self.cache.get(key)
def set(self, query, response):
if len(self.cache) >= self.max_size:
# Remove oldest entry
oldest = min(self.cache.keys())
del self.cache[oldest]
key = self.get_cache_key(query)
self.cache[key] = responseAPI Response Caching:
Cache platform API responses
Implement TTL (Time To Live)
Use Redis for distributed caching
Clear cache strategically
Scaling Strategies
Horizontal Scaling:
Multiple agent instances
Load balancing
Distributed processing
Shared state management
Vertical Scaling:
Increase memory
More CPU cores
Faster network
SSD storage
Queue-Based Processing:
import queue
import threading
class AgentQueue:
def __init__(self, num_workers=4):
self.queue = queue.Queue()
self.workers = []
for _ in range(num_workers):
worker = threading.Thread(target=self.process_queue)
worker.start()
self.workers.append(worker)
def add_task(self, task):
self.queue.put(task)
def process_queue(self):
while True:
task = self.queue.get()
try:
task.execute()
finally:
self.queue.task_done()Last updated

