Page cover

Debugging

Step 1: Check Logs

# View agent logs
tail -f logs/agent.log

# Check errors
tail -f logs/errors.log

# Filter by time
grep "2025-01-15" logs/agent.log

Step 2: Test API Connections

# Test LLM API
from agent_builder_framework import test_llm_connection
test_llm_connection('anthropic', api_key)

# Test platform API
from agent_builder_framework import test_platform_connection
test_platform_connection('twitter', credentials)

Step 3: Validate Configuration

# Check environment variables
python agent_[ID].py --check-config

# Validate API keys
python agent_[ID].py --validate-keys

# Test mode (no actual posts)
python agent_[ID].py --test

Step 4: Monitor Resources

Getting Help

Documentation:

  • Read this documentation thoroughly

  • Check README files

  • Review code comments

Community Support:

  • Discord community

  • GitHub discussions

  • Twitter/X: @GraceOS

Direct Support:

Information to Include:

  1. Agent ID

  2. Error messages

  3. Transaction hash (if payment related)

  4. Steps to reproduce

  5. Browser/system information

  6. Screenshots (if applicable)


Performance Optimization

LLM Cost Management

Token Usage:

Understanding token costs:

  • Input tokens: Usually cheaper

  • Output tokens: Usually more expensive

  • Context window: Affects performance

Optimization Strategies:

  1. Prompt Optimization:

    • Shorter, clearer prompts

    • Remove redundant instructions

    • Use system messages efficiently

    • Cache stable prompts

  2. Response Length Control:

    • Set max_tokens appropriately

    • Use stop sequences

    • Implement length checking

    • Truncate when necessary

  3. Model Selection:

    • Use smaller models for simple tasks

    • Reserve powerful models for complex queries

    • Implement tiered response system

    • Monitor cost per interaction

Cost Tracking:

Caching Strategies

Response Caching:

Cache frequently asked questions:

API Response Caching:

  • Cache platform API responses

  • Implement TTL (Time To Live)

  • Use Redis for distributed caching

  • Clear cache strategically

Scaling Strategies

Horizontal Scaling:

  • Multiple agent instances

  • Load balancing

  • Distributed processing

  • Shared state management

Vertical Scaling:

  • Increase memory

  • More CPU cores

  • Faster network

  • SSD storage

Queue-Based Processing:

Last updated