Debugging
Step 1: Check Logs
# View agent logs
tail -f logs/agent.log
# Check errors
tail -f logs/errors.log
# Filter by time
grep "2025-01-15" logs/agent.logStep 2: Test API Connections
# Test LLM API
from agent_builder_framework import test_llm_connection
test_llm_connection('anthropic', api_key)
# Test platform API
from agent_builder_framework import test_platform_connection
test_platform_connection('twitter', credentials)Step 3: Validate Configuration
# Check environment variables
python agent_[ID].py --check-config
# Validate API keys
python agent_[ID].py --validate-keys
# Test mode (no actual posts)
python agent_[ID].py --testStep 4: Monitor Resources
Getting Help
Documentation:
Read this documentation thoroughly
Check README files
Review code comments
Community Support:
Discord community
GitHub discussions
Twitter/X: @GraceOS
Direct Support:
Email: [email protected]
Priority support: [email protected]
Bug reports: GitHub Issues
Information to Include:
Agent ID
Error messages
Transaction hash (if payment related)
Steps to reproduce
Browser/system information
Screenshots (if applicable)
Performance Optimization
LLM Cost Management
Token Usage:
Understanding token costs:
Input tokens: Usually cheaper
Output tokens: Usually more expensive
Context window: Affects performance
Optimization Strategies:
Prompt Optimization:
Shorter, clearer prompts
Remove redundant instructions
Use system messages efficiently
Cache stable prompts
Response Length Control:
Set max_tokens appropriately
Use stop sequences
Implement length checking
Truncate when necessary
Model Selection:
Use smaller models for simple tasks
Reserve powerful models for complex queries
Implement tiered response system
Monitor cost per interaction
Cost Tracking:
Caching Strategies
Response Caching:
Cache frequently asked questions:
API Response Caching:
Cache platform API responses
Implement TTL (Time To Live)
Use Redis for distributed caching
Clear cache strategically
Scaling Strategies
Horizontal Scaling:
Multiple agent instances
Load balancing
Distributed processing
Shared state management
Vertical Scaling:
Increase memory
More CPU cores
Faster network
SSD storage
Queue-Based Processing:
Last updated

