Deployment
Deployment Options
Local Development
Setup Process:
# 1. Create project directory
mkdir my-grace-agent
cd my-grace-agent
# 2. Download agent files
# (From Grace platform)
# 3. Create virtual environment
python -m venv venv
# Windows
venv\Scripts\activate
# Linux/Mac
source venv/bin/activate
# 4. Install dependencies
pip install -r requirements.txt
# 5. Configure environment
cp .env.example .env
# Edit .env with your API keys
# 6. Test agent
python agent_[ID].py --test
# 7. Run agent
python agent_[ID].pyDirectory Structure:
my-grace-agent/
├── agent_[ID].py # Your agent
├── agent_builder_framework.py
├── requirements.txt
├── .env # Your config
├── .env.example # Template
├── README.md
├── logs/ # Runtime logs
│ ├── agent.log
│ └── errors.log
└── data/ # Optional storage
└── agent_state.jsonCloud Deployment
Option 1: Heroku
Advantages:
Easy deployment
Free tier available
Automatic scaling
Built-in logging
Setup:
# Install Heroku CLI
# Create Heroku app
heroku create my-grace-agent
# Set environment variables
heroku config:set ANTHROPIC_API_KEY=your_key
heroku config:set TWITTER_API_KEY=your_key
# Create Procfile
echo "worker: python agent_[ID].py" > Procfile
# Deploy
git push heroku main
# Scale worker
heroku ps:scale worker=1Option 2: AWS Lambda
Advantages:
Pay per execution
Highly scalable
Serverless architecture
AWS ecosystem integration
Setup:
# Package dependencies
pip install -r requirements.txt -t ./package
# Add agent code
cp agent_[ID].py ./package/
cp agent_builder_framework.py ./package/
# Create deployment package
cd package
zip -r ../agent-lambda.zip .
# Upload to Lambda
aws lambda create-function \
--function-name grace-agent \
--runtime python3.11 \
--handler agent_[ID].handler \
--zip-file fileb://agent-lambda.zipOption 3: DigitalOcean Droplet
Advantages:
Full control
Predictable pricing
Simple setup
Good performance
Setup:
# SSH into droplet
ssh root@your_droplet_ip
# Install Python
apt update && apt install python3-pip python3-venv
# Clone/upload your code
git clone your-repo
cd your-repo
# Setup virtual environment
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
# Create systemd service
sudo nano /etc/systemd/system/grace-agent.service
# Service file content:
[Unit]
Description=Grace Agent
After=network.target
[Service]
User=root
WorkingDirectory=/root/agent
Environment="PATH=/root/agent/venv/bin"
ExecStart=/root/agent/venv/bin/python agent_[ID].py
[Install]
WantedBy=multi-user.target
# Enable and start
sudo systemctl enable grace-agent
sudo systemctl start grace-agentOption 4: Docker Container
Advantages:
Consistent environment
Easy portability
Version control
Isolation
Dockerfile:
FROM python:3.11-slim
WORKDIR /app
# Copy requirements
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy agent code
COPY agent_[ID].py .
COPY agent_builder_framework.py .
# Environment variables loaded at runtime
ENV PYTHONUNBUFFERED=1
# Run agent
CMD ["python", "agent_[ID].py"]Deployment:
# Build image
docker build -t grace-agent:latest .
# Run locally
docker run -d \
--name my-agent \
--env-file .env \
grace-agent:latest
# Push to registry
docker tag grace-agent:latest username/grace-agent:latest
docker push username/grace-agent:latestProduction Considerations
Monitoring:
Set up logging (Datadog, CloudWatch, etc.)
Track API usage and costs
Monitor response times
Alert on errors
Scaling:
Horizontal: Multiple agent instances
Vertical: Increase resources
Load balancing: Distribute requests
Queue system: Handle bursts
Backup:
Code repository: GitHub, GitLab
Configuration: Encrypted backups
State data: Regular snapshots
API keys: Secure vault
Last updated

